Divisors of the Middle Binomial Coefficient
نویسنده
چکیده
We study some old and new problems involving divisors of the middle binomial coefficient (2n n ) .
منابع مشابه
On Prime Divisors of Binomial Coefficients
This paper, using computational and theoretical methods, deals with prime divisors of binomial coefficients: Geometric distribution and number of distinct prime divisors are studied. We give a numerical result on a conjecture by Erdôs on square divisors of binomial coefficients.
متن کاملA Binomial Sum Related to Wolstenholme’s Theorem
A certain alternating sum u(n) of n + 1 products of two binomial coefficients has a property similar to Wolstenholme’s theorem, namely u(p) ≡ −1 (mod p3) for all primes p ≥ 5. However, this congruence also holds for certain composite integers p which appear to always have exactly two prime divisors, one of which is always 2 or 5. This phenomenon will be partly explained and the composites in qu...
متن کاملComparison of five introduced confidence intervals for the binomial proportion
So far many confidence intervals were introduced for the binomial proportion. In this paper, our purpose is comparing five well known based on their exact confidence coefficient and average coverage probability.
متن کاملA remark on the means of the number of divisors
We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$, where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$, with $d(n)$ denoting the number of positive divisors of $n$. Also, we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.
متن کاملThe Catalan numbers
E. Catalan stated in 1874 that the numbers (2m)! (2n)!/m! n! (m+n)! are integers. When m = 0 these numbers are the middle binomial coefficients ( 2n n ) . When m = 1 they are twice the Catalan numbers. In this paper, we give a combinatorial interpretation for these numbers when m = 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015